


Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Vulnerability Information

4 Code Overview

4.1 Contracts Description

4.2 Visibility Description

4.3 Vulnerability Summary

5 Audit Result

6 Statement



1 Executive Summary

On 2024.05.22, the SlowMist security team received the 9GAG team's security audit application for Memecoin

Farming, developed the audit plan according to the agreement of both parties and the characteristics of the

project, and finally issued the security audit report.

The SlowMist security team adopts the strategy of "white box lead, black, grey box assists" to conduct a

complete security test on the project in the way closest to the real attack.

The test method information:

Test method Description

Black box testing Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the

internal running status, mining weaknesses.

White box

testing

Based on the open source code, non-open source code, to detect whether there are

vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the DeFi

project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the DeFi project. It is

strongly recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the DeFi project. It is

recommended to fix medium-risk vulnerabilities.

Low

Low severity vulnerabilities may affect the operation of the DeFi project in certain

scenarios. It is suggested that the project team should evaluate and consider whether

these vulnerabilities need to be fixed.

Weakness
There are safety risks theoretically, but it is extremely difficult to reproduce in

engineering.

Suggestion There are better practices for coding or architecture.



2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart

contract:

Serial Number Audit Class Audit Subclass

1 Overflow Audit -

2 Reentrancy Attack Audit -

3 Replay Attack Audit -

4 Flashloan Attack Audit -

5 Race Conditions Audit Reordering Attack Audit

6 Permission Vulnerability Audit

Access Control Audit

Excessive Authority Audit

7 Security Design Audit

External Module Safe Use Audit

Compiler Version Security Audit

Hard-coded Address Security Audit

Fallback Function Safe Use Audit

Show Coding Security Audit

Function Return Value Security Audit

External Call Function Security Audit

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using

automated analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any

potential problems.



Serial Number Audit Class Audit Subclass

7 Security Design Audit

Block data Dependence Security Audit

tx.origin Authentication Security Audit

8 Denial of Service Audit -

9 Gas Optimization Audit -

10 Design Logic Audit -

11 Variable Coverage Vulnerability Audit -

12 "False Top-up" Vulnerability Audit -

13 Scoping and Declarations Audit -

14 Malicious Event Log Audit -

15 Arithmetic Accuracy Deviation Audit -

16 Uninitialized Storage Pointer Audit -

3 Project Overview

3.1 Project Introduction

StakelandFarmClaim contracts are memecoin farming reward claim contracts. The contract sets up a

tokenConfig to deposit tokens through the initDepositAndSetupTokenConfig function called by the admin role

and issues a MerkleProof through the role. Users withdraw tokens with merkle proofs presented to the claim

function before a configurable expiration time. The withdrawal can be done by a wallet that is delegated through

delegate.xyz.

3.2 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:



NO Title Category Level Status

N1
Risk of excessive

authority

Authority Control

Vulnerability Audit
Medium Acknowledged

N2
Missing the correct

validation
Design Logic Audit Low Fixed

N3
Preemptive

Initialization

Race Conditions

Vulnerability
Suggestion Acknowledged

N4
Potential duplicate

withdrawals
Design Logic Audit Information Acknowledged

N5
External call

reminder

Unsafe External Call

Audit
Suggestion Acknowledged

4 Code Overview

4.1 Contracts Description

Audit Version:

https://github.com/9gag/memecoin-staking-audit/contracts/memecoin/farming

commit: ade496568b1b07ef7772fba66a48d3d302fba189

Fixed Version:

https://github.com/9gag/memecoin-staking-audit/contracts/memecoin/farming

commit: ac3c66dc0991e43e731d97bfb0557767c75b0f66

The main network address of the contract is as follows:

The code was not deployed to the mainnet.

4.2 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

StakelandFarmClaim

Function Name Visibility Mutability Modifiers



StakelandFarmClaim

<Constructor> Public
Can Modify

State
-

initialize Public
Can Modify

State
initializer

claim External
Can Modify

State

nonReentrant onlyClaimNotPaused

onlyClaimNotPausedById

_getRequester Private - -

_calculateClaim Internal - -

_checkValidClaim Internal - -

_verifyProof Private - -

_checkValidSetup Internal - -

initDepositAndSetupTo

kenConfig
External

Can Modify

State
onlyOwner

depositToken External
Can Modify

State
onlyOwner onlyClaimPausedById

withdrawExpiredToken External
Can Modify

State
onlyOwner

setTokenMerkleRootByI

d
External

Can Modify

State
onlyOwner onlyClaimPausedById

setTokenClaimStartTsBy

Id
External

Can Modify

State
onlyOwner onlyClaimPausedById

pauseTokenClaim External
Can Modify

State
onlyOwner

unpauseClaim External
Can Modify

State
onlyOwner

pauseClaim External
Can Modify

State
onlyOwner

unpauseClaim External
Can Modify

State
onlyOwner

getTokenConfigById External - -

getTokenBalanceById External - -



StakelandFarmClaim

getTokensClaimedByUs

erAndId
External - -

getTokensClaimableByC

laimInfo
External - -

4.3 Vulnerability Summary

[N1] [Medium] Risk of excessive authority

Category: Authority Control Vulnerability Audit

Content

1.In the StakelandFarmClaim contract, the owner role can modify the merkleRoot  and the claimStartTs  for

a specific farmId, leading to the risk of over-privilege of the owner role.

Code location:

memecoin-staking-audit/contracts/memecoin/farming/StakelandFarmClaim.sol#239-262

    function setTokenMerkleRootById(uint16 farmId, bytes32 newMerkleRoot)

        external

        onlyOwner

        onlyClaimPausedById(farmId)

    {

        _tokenConfigs[farmId].merkleRoot = newMerkleRoot;

        emit TokenMerkleRootUpdated(farmId, newMerkleRoot);

    }

    function setTokenClaimStartTsById(uint16 farmId, uint40 newTokenClaimStartTs)

        external

        onlyOwner

        onlyClaimPausedById(farmId)

    {

        _tokenConfigs[farmId].claimStartTs = newTokenClaimStartTs;

        emit TokenClaimStartTsUpdated(farmId, newTokenClaimStartTs);

    }

2.The contract inherits the UUPSUpgrader contract and in this UUPSUpgrader contract, the owner role can set

the upgrader role and upgrade the contract through the upgrader role.



3.If a user approves the tokenConfig.token  to the contract, the owner role can call the depositToken function

to deposit the token to this contract, or the owner role can call the initDepositAndSetupTokenConfig function to

deposit the token to the contract when there is a new token config.

Code location:

memecoin-staking-audit/contracts/memecoin/farming/StakelandFarmClaim.sol#179-212

    function initDepositAndSetupTokenConfig(

        address depositor,

        uint16 farmId,

        uint256 amount,

        TokenConfig calldata tokenConfig

    ) external onlyOwner {

        ...

        IERC20(tokenConfig.token).safeTransferFrom(depositor, address(this), amount);

        _tokenConfigs[farmId] = tokenConfig;

        ...

    }

    function depositToken(address depositor, uint16 farmId, uint256 amount)

        external

        onlyOwner

        onlyClaimPausedById(farmId)

    {

        ...

        IERC20(tokenConfig.token).safeTransferFrom(depositor, address(this), amount);

    }

Solution

In the short term, transferring owner ownership to multisig contracts is an effective solution to avoid single-

point risk. But in the long run, it is a more reasonable solution to implement a privilege separation strategy and

set up multiple privileged roles to manage each privileged function separately. The authority involving user

funds should be managed by the community, and the authority involving emergency contract suspension can be

managed by the EOA address. This ensures both a quick response to threats and the safety of user funds.

Status

Acknowledged; After communicating with the project team, they expressed that they plan on using a multi-sig as

the contract owner, and roles with separate permissions and responsibilities will also be set up.

[N2] [Low] Missing the correct validation



Category: Design Logic Audit

Content

1.When the owner role sets the tokenConfig in the initDepositAndSetupTokenConfig function or modifies the

claimStartTs in the setTokenClaimStartTsById function, the internal function _checkValidSetup checks the

claimStartTs can not be 0, and the setTokenClaimStartTsById does not check the claimStartTs.

Code location:

memecoin-staking-audit/contracts/memecoin/farming/StakelandFarmClaim.sol#155-167 ,254-262

    function _checkValidSetup(address depositor, uint16 farmId, uint256 amount, 

TokenConfig calldata tokenConfig)

        internal

        pure

    {

        // this contract only records farmId starting from season 2, so no 0 and 1 

farmId

        if (

            depositor == address(0) || farmId == 0 || farmId == 1 || amount == 0 || 

tokenConfig.token == address(0)

                || tokenConfig.initialUnlockBP > _BASIS_POINTS || 

tokenConfig.expiryInDays == 0

                || tokenConfig.claimStartTs == 0 || tokenConfig.merkleRoot.length == 

0

        ) {

            revert InvalidSetup();

        }

    }

    function setTokenClaimStartTsById(uint16 farmId, uint40 newTokenClaimStartTs)

        external

        onlyOwner

        onlyClaimPausedById(farmId)

    {

        _tokenConfigs[farmId].claimStartTs = newTokenClaimStartTs;

        emit TokenClaimStartTsUpdated(farmId, newTokenClaimStartTs);

    }

2.In the withdrawExpiredToken function, the owner role can withdraw the unclaimed token from the contract

after its claim period has expired. But the expiry time only checks the claimStartTs add the expiry days. This

check does not contain the vestDurationInDays  and it is not the same as the calculation of the expiryTs .



And the calculation in the withdrawExpiredToken function, the tokenConfig.claimStartTs +

tokenConfig.expiryInDays * 1 days  time is in the claim time and does not reach the expiryTs .

Code location:

memecoin-staking-audit/contracts/memecoin/farming/StakelandFarmClaim.sol#223-225

    function withdrawExpiredToken(uint16 farmId, address receiver) external onlyOwner 

{

        ...

        if (block.timestamp <= tokenConfig.claimStartTs + tokenConfig.expiryInDays * 

1 days) {

            revert TokenClaimNotExpired();

        }

        ...

    }

Solution

Status

Fixed

[N3] [Suggestion] Preemptive Initialization

Category: Race Conditions Vulnerability

Content

By calling the initialize and deploy functions to initialize the contracts, there is a potential issue that malicious

attackers preemptively call the initialize function to initialize.

Code location:

memecoin-staking-audit/contracts/memecoin/farming/StakelandFarmClaim.sol#52-57

    function initialize() public initializer {

        UUPSUpgrader.__UUPSUpgrader_init();

        ReentrancyGuardUpgradeable.__ReentrancyGuard_init();

        OwnableUpgradeable.__Ownable_init(_msgSender());

It’s recommended to check the claimStartTs whether is larger than the block.timestamp(now). And

when the vesting begins, it is recommended not to modify the claimStartTs after the vesting ends.

1.

It’s recommended to check the claim expiry time as expiryTs .2.



        _dcV2 = IDelegateRegistry(0x00000000000000447e69651d841bD8D104Bed493);

    }

Solution

It is suggested that the initialization operation can be called in the same transaction immediately after the

contract is created to avoid being maliciously called by the attacker.

Status

Acknowledged

[N4] [Information] Potential duplicate withdrawals

Category: Design Logic Audit

Content

In the contract, the user receives the reward through the claim function. The claim can be msg.sender or the

vault. Each time the user claims the reward, it will be recorded in _usersTokensClaimedById, and its mapping

includes farmId and user address. The verification is to verify the user proof and merkleRoot through the

_verifyProof function. The verification has a replay write-up code. Users issued by the centralized merkleRoot

can call it repeatedly to pass the _verifyProof verification. However, there is a _usersTokensClaimedById reward

record for a single user. But there is no way to obtain rewards through this verification after receiving all

totalAllocated . However, if the requester address permitted and delegated by this user is also issued during

the merkleRoot issuance process. And in the case of the current tokenConfig.token still exists in the contract, the

reward tokens can be received here for their requester address.

Code location:

memecoin-staking-audit/contracts/memecoin/farming/StakelandFarmClaim.sol#65-83, 147-153

    function claim(address vault, TokenClaim calldata tokenClaim)

        external

        nonReentrant

        onlyClaimNotPaused

        onlyClaimNotPausedById(tokenClaim.farmId)

    {

        address requester = _getRequester(vault);

        TokenConfig memory tokenConfig = _tokenConfigs[tokenClaim.farmId];



        _checkValidClaim(requester, tokenConfig, tokenClaim);

        uint256 amount = _calculateClaim(requester, tokenConfig, tokenClaim.farmId, 

tokenClaim.totalAllocated);

        if (amount == 0) revert ZeroClaimAmount();

        _usersTokensClaimedById[requester][tokenClaim.farmId] += amount;

        IERC20(tokenConfig.token).safeTransfer(requester, amount);

        ...

    }

    function _checkValidClaim(address user, TokenConfig memory tokenConfig, 

TokenClaim calldata tokenClaim)

        internal

        view

    {

        ...

        if (!_verifyProof(user, tokenClaim)) revert InvalidProof();

    }

    function _verifyProof(address user, TokenClaim calldata tokenClaim) private view 

returns (bool) {

        return MerkleProof.verifyCalldata(

            tokenClaim.proof,

            _tokenConfigs[tokenClaim.farmId].merkleRoot,

            keccak256(bytes.concat(keccak256(abi.encode(user, tokenClaim.farmId, 

tokenClaim.totalAllocated))))

        );

    }

Solution

It is recommended that the project team confirm whether the code conforms to the actual business design, and

pay attention to the accuracy of the centralized issuance of merkleRoot.

Status

Acknowledged; After communicating with the project team, they expressed that the code conforms to the actual

business design as all Merkle proofs are initially only generated once with all eligible wallet addresses for every

new farming campaign. Wallet who acts as a delegator will not be able to claim using the same proof from

delegatee, thus no duplicate withdrawal even when they are “undelegated”. As long as the claimer is not the

eligible address they used to generate from in the first place, it will not pass _verifyProof check.

[N5] [Suggestion] External call reminder



Category: Unsafe External Call Audit

Content

In the claim function, the user can authorize a third-party contract to delegate an acceptance address as a token

requester, but this validation contract is not in the scope of the audit. The legitimacy of this contract and the

security of the calling logic need to be confirmed.

Code location:

memecoin-staking-audit/contracts/memecoin/farming/StakelandFarmClaim.sol#95

    bool isDelegateValid = _dcV2.checkDelegateForAll(_msgSender(), vault, "");

Solution

It is recommended to clarify whether this external call contract is credible and check the validity of the incoming

resolver address and data.

Status

Acknowledged; After communicating with the project team, they expressed that they have made sure that the

external call to the third party DelegateRegistry contract is working as intended.

5 Audit Result

Audit Number Audit Team Audit Date Audit Result

0X002405240001 SlowMist Security Team 2024.05.22 - 2024.05.24 Medium Risk

Summary conclusion: The SlowMist security team uses a manual and SlowMist team's analysis tool to audit the

project, during the audit work we found 1 medium risk, 1 low risk, 2 suggestions, and 1 information. And 1 low

risk was fixed. The code was not deployed to the mainnet.



6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based

on the documents and materials provided to SlowMist by the information provider till the date of the insurance

report (referred to as "provided information"). SlowMist assumes: The information provided is not missing,

tampered with, deleted or concealed. If the information provided is missing, tampered with, deleted, concealed,

or inconsistent with the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting

therefrom. SlowMist only conducts the agreed security audit on the security situation of the project and issues

this report. SlowMist is not responsible for the background and other conditions of the project.




